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ABSTRACT
Information Extraction (IE) pipelines analyze text through
several stages. The pipeline’s algorithms determine both its
effectiveness and its run-time efficiency. In real-world tasks,
however, IE pipelines often fail acceptable run-times because
they analyze too much task-irrelevant text. This raises two
interesting questions: 1) How much“efficiency potential”de-
pends on the scheduling of a pipeline’s algorithms? 2) Is it
possible to devise a reliable method to construct efficient IE
pipelines? Both questions are addressed in this paper. In
particular, we show how to optimize the run-time efficiency
of IE pipelines under a given set of algorithms. We evaluate
pipelines for three algorithm sets on an industrially relevant
task: the extraction of market forecasts from news articles.
Using a system-independent measure, we demonstrate that
efficiency gains of up to one order of magnitude are possible
without compromising a pipeline’s original effectiveness.
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Categories and Subject Descriptors: I.2.7 [AI]: Nat-
ural Language Processing—Text analysis H.3.4 [Informa-
tion Storage and Retrieval]: Systems and Software—
Performance evaluation (efficiency and effectiveness)
General Terms: Algorithms, Performance
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1. INTRODUCTION
Information Extraction (IE) will improve today’s possi-

bilities of knowledge and information acquisition. Yet, the
number of industrial applications is still limited. Typical IE
tasks require several analysis stages ranging from prepro-
cessing over the extraction of entities, attributes, relations,
and events to reference resolution and normalization. “Con-
ventional” pipelines for these tasks execute all analyses on
the whole input and tend to run into efficiency problems, i.e.,
they fail to meet some required response time. We use the
term efficiency here only to address such run-time concerns.
Accordingly, we use effectiveness to describe the quality of
an algorithm, such as its accuracy. Existing approaches to
increase efficiency focus on faster algorithms for single anal-
yses within a pipeline. However, more effective algorithm
sets normally lead to a decrease in efficiency as illustrated in
Figure 1a. In contrast, we aim to increase efficiency without
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Figure 1: (a) Typical growth curve of the run-time of an

IE pipeline; more effective sets of algorithms improve the

pipeline’s effectiveness but entail higher run-time. (b) A

smart scheduling of a pipeline’s algorithms can improve

its efficiency without impairing its effectiveness.

losing effectiveness by optimizing the pipeline itself: instead
of changing the pipeline’s algorithms we introduce filtering
stages and rearrange the pipeline’s schedule (Figure 1b).

Within an IE task, different analysesA1, ...,Ak take place,
e.g. tokenization or person entity recognition, whereas each
analysis Ai can be operationalized by alternative IE algo-
rithms. We call an ordered subset π = (A1, ...,Ak) of anal-
yses an analysis schedule and denote the employed set of
algorithms as A. The tuple Π = 〈A, π〉 constitutes an In-
formation Extraction pipeline. Each algorithm A ∈ A needs
information of certain input types in order to work properly,
and A provides information of certain output types. Conse-
quently, only a subset of the k! possible analysis schedules
fulfill the input constraints for all algorithms in A. While
some algorithms will fail completely if their requirements
are not met, others may degrade significantly in their effec-
tiveness. We hence consider only pipelines whose schedules
comply with all input constraints imposed by the employed
algorithms. We call such pipelines admissible. If admissibil-
ity is maintained, the exchange of a pipeline’s schedule does
not impair the pipeline’s effectiveness.

Contributions In this paper, we present a generic method
to construct efficient IE pipelines based on four paradigms:
1) a maximum decomposition of the given IE task into single
analyses, 2) early filtering of relevant information, 3) lazy
evaluation of the applied algorithms, and 4) an optimized
scheduling of the resulting filtering stages. We have evalu-
ated our method on a subtask of the market forecast extrac-
tion task [13]. To make the efficiency of pipelines comparable
beyond system bounds, we use a new measure of efficiency
that relies on an internal comparison of the algorithms in
a pipeline. The results indicate that our method can speed
up conventional IE pipelines up to an order of magnitude,
while maintaining effectiveness.



Related Work The limited industrial usage of IE has
recently been discussed in [14]. The authors identify the
lack of reusability as one major problem and introduce a
component-based IE approach. We also exploit a decompo-
sition into components, but we address another major prob-
lem of IE: efficiency. Run-time efficiency has always been a
main aspect of algorithm research, but we observe that most
rewarded research in IE and in Natural Language Processing
(NLP) focuses on effectiveness as do the leading evaluation
tracks, namely, MUC, ACE, and the CoNLL Shared Task.
While effectiveness is the key to making information pro-
cessable, we argue that the success of IE systems in the wild
is decided by their response times.

Efficiency is by far not an unknown topic in IE and NLP.
For instance, greedy decoding has been shown to be compet-
itive with exact inference in entity recognition [10] and ma-
chine translation [7]. Other research uses hashing or heuris-
tic search for feature extraction [6] and parsing [4, 8], while
Petrov [9] studies efficiency under an iterative refinement of
the complexity of NLP models. Like in these examples most
research concentrates on single analyses. In contrast, we aim
to develop efficient analysis pipelines. Pipelines that oper-
ate on large sources first need to efficiently filter candidate
texts, which has been done with fast text categorization [12]
or querying techniques trained on text with the relations
of interest [1]. The KnowItNow system builds specialized
index structures to speed up the IE process [5], and a sched-
ule designed with efficiency in mind is given in [2]. In both
cases, the authors focus on retrieval aspects. Instead, we
investigate the core IE algorithms for text analysis.

2. PIPELINE OPTIMIZATION
For the purpose of this paper, we first introduce two def-

initions in order to quantify the efficiency of IE algorithms
and pipelines. On this basis, we then present the essential
steps to optimize the efficiency of IE pipelines.

Definition 1. Let A be an IE algorithm and D a text col-
lection with n sentences. If A needs time TD(A) to process
all sentences of D on a system Σ, then the average sentence
response time of A on Σ is t(A) = TD(A)/n.

Definition 1 can be adopted to t(Π) for an IE pipeline Π.
However, response times are not meaningful by themselves:
usually, run-time complexities are defined in a relative man-
ner, by measuring the run-time in unit cost steps that are
accepted over system bounds, programming environments,
and the like. In this regard we employ t(A0) of a tokeniza-
tion algorithm A0 on the given system Σ as unit cost step.
Thereby, we normalize t(A) with respect to IE tasks and
cancel out many system-specific side effects.

Definition 2. Let τ be an IE task, Π a pipeline to tackle
τ , E the effectiveness of Π on τ , and A0 a tokenization al-
gorithm. Then, the averaged efficiency of Π to tackle τ at
effectiveness E is F@E = t(Π)/t(A0).

F@E allows to estimate t(Π) system-independently. In
general, t(Π) follows from the response times of the al-
gorithms and the number of processed sentences. While
t(A) is inherent to an algorithm A, the number of pro-
cessed sentences depends on a pipeline’s schedule. To con-
struct a preferably efficient pipeline, we now introduce four
paradigms that yield a tailored scheduling of its algorithms,
and that can be seen as operational steps of a method.

Paradigm 1: Maximum Decomposition The deeper
a task τ is decomposed into single analyses, the better a
pipeline for τ can be optimized. Some analyses have a
predefined order, though. Also, some algorithms may be
bundled in off-the-shelf tools, which can only be used in a
black-box manner. In preprocessing, decomposition means
to separate the analyses for sentence splitting, tokenization,
the decoding of sequence information (e.g. part-of-speech-
tagging), and the creation of syntactic tree structures (e.g.
dependency parsing). Similarly, decomposing the recogni-
tion of different entity, attribute, and relation types supports
optimization. Some of these are required, whereas others are
optional. Finally, IE pipelines extract information on spe-
cific events, which relate to statements in the text, i.e., text
windows of w > 0 sentences. Such a statement is only rele-
vant if it comprises an anchor for an event of interest.

Paradigm 2: Early Filtering It is reasonable to focus
only on information that probably satisfies a given infor-
mation need. Thus, filters are inserted after each core IE
analyses. In particular, statements without instances of a
required entity, attribute, or relation type are discarded as
well as statements that are classified not to refer to an event
of interest. Also, statements are only kept if the required
entities and attributes can be normalized. We call the com-
bination of preprocessing, IE analysis, and filter a filtering
stage. While filtering can drastically reduce the amount of
data to be processed, we thereby miss statements where en-
tities and attributes are spread across the text. This tradeoff
can be influenced by adjusting the statement size w.

Paradigm 3: Lazy Evaluation Based on the filtering
stages, a simple but effective paradigm can be applied: each
analysis is delayed until its results is needed, and it is ex-
ecuted only on possibly relevant text windows. Of course,
no analysis is performed more than once. The rationale is
that, the more filtering takes place before the execution of
an algorithm A, the less data A will process.

Paradigm 4: Optimized Scheduling Finally, the filter-
ing stages are arranged in the most efficient way. Assume
that we have implementations of two stages F1 and F2 with
t(F1) and t(F2). If F1 is applied to n sentences, it filters a
number m(F1) of the n sentences on average, while F2 filters
m(F2) sentences. In order to minimize the response time of
both stages in sequence, F1 is then applied before F2 iff

t(F1) + m(F1)/n · t(F2) < t(F2) + m(F2)/n · t(F1). (1)

While the filter ratios, such as m(F1)/n, can be estimated
based on a training set, they may change after each applied
filter. For simplicity, we approximate the optimized schedule
in Section 3 by only pairwise computing the most efficient
schedule of two filters using their initial filter ratios.

3. EVALUATION
The Task We evaluated the following subtask τ of the mar-
ket forecast extraction task [13]: Extract all related time and
money entities that refer to a revenue forecast. An example
for such a relation is: “In 2009, market analysts expected
touch screen revenues to reach [$9B]money [by 2015]time.”
While τ is quite new and non-standard, the implications
of the evaluation can be transferred to other tasks as well.

The Data We used the Revenue Corpus introduced in
[13] and processed its training set to develop and train al-
gorithms, to measure their response times, and to estimate
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Figure 2: Construction of an optimized schedule following the four paradigms: (a) Maximum decomposition.
(b) Early filtering. (c) Lazy evaluation. (d) Optimized scheduling (here, according to algorithm set A2).

the initial filter ratios of the filtering stages.1 On the test
set, we evaluated the efficiency and the effectiveness of all
constructed pipelines. In this set, all 347 of the 6,038 sen-
tences, in which both a time and a money entity relate to
revenue, are manually annotated as statements on revenue,
among them 104 forecasts. Hence, we set the statement size
w (cf. Section 2) of all evaluated algorithms to 1.

Analyses and Algorithms Following paradigm 1, we de-
composed τ into the following nine analyses (cf. Figure 2a):

se Split the input text into sentences.

tk Tokenize the sentences.

lp Lemmatize the tokens and tag their part-of-speech.

dp Parse dependencies of the tokens in the sentences.

tr Recognize all time entities in the sentences.

mr Recognize all money entities in the sentences.

re Extract relations between time and money entities.

si Identify statements on revenue.

fc Classify whether a sentence is a forecast or not.

As we only needed lemmas and tags together, we did not
decompose lp. Table 1 lists the algorithms that we evaluated
for the nine analyses. We used the TreeTagger2 [11] and the
mate-tools3 [3, 4] for lemmatization, tagging, and parsing.
Where no reference is given, we measured effectiveness on
the test set. Since we had more than one algorithm for lp,
dp, re, and si, we investigated three algorithm sets:

A1 = {se1, tk1, lp1,− , tr1,mr1, re1, si1, fc1}
A2 = {se1, tk1, lp1,dp1, tr1,mr1, re2, si2, fc1}
A3 = {se1, tk1, lp2,dp2, tr1,mr1, re2, si2, fc1}

Differences are marked in bold. Because of a very simple
relation extractor, A1 needs no dependency parsing at all.

Filtering Stages For paradigm 2, we inserted a filter after
each IE analysis (cf. Figure 2b). The results of dp are used
for re, whereas dp itself requires lemmas and tags from lp
as input. So, for lazy evaluation, we delayed lp and dp to
execute them right before re (cf. Figure 2c).

Schedules and Pipelines The last step is to derive an
optimized schedule, which we sketch for A2. As follows from
the dependencies in Table 1 the filtering stages Ft = (tr, tf)
and Fm = (mr,mf) have to precede Fr = (lp, dp, re, rf)
and Fs = (si, sf) for admissibility, and Ft also has to pre-
cede Ff = (fc, ff). We pairwise computed the most efficient
schedule of two stages using inequation 1. As a result, we
moved Ff before Fr and inserted lp before fc. Also, we post-
poned Fr after Fs as illustrated in Figure 2d. Altogether,
we finished with the optimized schedule π∗2 for A2:
1Revenue Corpus, http://infexba.upb.de
2TreeTagger, http://code.google.com/p/tt4j
3mate-tools, http://code.google.com/p/mate-tools

Table 1: The evaluated algorithms A for analysis
A, the analyses each A depends on, its average sen-
tence response time t(A) in milliseconds, and its ef-
fectiveness E(A) if applied in isolation (accuracy Acc,
labeled attachment score LAS, precision P, recall R).

A A approach depends on t(A) E(A)

se: se1 rule-based – 0.46 Acc 0.95
tk: tk1 rule-based se 0.60 Acc 0.98
lp: lp1 TreeTagger se, tk 0.34 Acc 0.97 [11]

lp2 mate-tools se, tk 21.87 Acc 0.98 [3]
dp: dp1 mate-tools se, tk, lp 54.61 LAS 0.87 [4]

dp2 mate-tools se, tk, lp 166.14 LAS 0.88 [4]

tr: tr1 regex se, tk 0.37 P 0.91, R 0.97
mr: mr1 regex se, tk 0.70 P 0.99, R 0.95
re: re1 rule-based se, tk, tr,mr 0.02 P 0.69, R 0.88

re2 SVM se, tk, lp, dp, tr,mr 1.39 P 0.75, R 0.88
si: si1 lexicon se, tk 0.02 P 0.86, R 0.93

si2 SVM se, tk, tr,mr 1.43 P 0.87, R 0.93
fc: fc1 SVM se, tk, lp, tr 0.27 Acc 0.93

Table 2: Precision (P), recall (R), and F1-score (F1)
of all admissible pipelines Πi,j = 〈Ai, πj〉.
π P R F1 P R F1 P R F1

algorithm set A1 algorithm set A2 algorithm set A3

πa 0.65 0.56 0.60 0.72 0.58 0.65 0.75 0.61 0.67
πb 0.65 0.56 0.60 0.72 0.58 0.65 0.75 0.61 0.67
πc 0.65 0.56 0.60 0.72 0.58 0.65 0.75 0.61 0.67

π∗1 0.65 0.56 0.60 – – – – – –
π∗2 0.65 0.56 0.60 0.71 0.58 0.64 0.75 0.61 0.67
π∗3 0.65 0.56 0.60 0.71 0.58 0.64 0.75 0.61 0.67

π∗2 = (se, tk, tr, tf, lp, fc, ff,mr,mf, si, sf, dp, re, rf)

For A1 and A3, we accordingly obtained π∗1 and π∗3 :

π∗1 = (se, tk, si, sf, tr, tf,mr,mf, lp, fc, ff, re, rf)

π∗3 = (se, tk, tr, tf,mr,mf, si, sf, lp, fc, ff, dp, re, rf)

As baselines, we used all pipelines with one of the sched-
ules πa, πb, and πc from Figure 2a–c. In fact, πc resem-
bles the schedule from [2]. Except for π∗1 , we implemented a
pipeline Πi,j in Java for each Ai and πj . π∗1 applies si before
tr and mr. Thus, a pipeline with π∗1 is only admissible for
A1, which contains si1 for si. We ran all pipelines five times
on the test set using a 2 GHz Intel Core 2 Duo MacBook
with 4 GB RAM and averaged over the response times.

Effectiveness Results The effectiveness of each pipeline is
given in Table 2. Precision and recall increase from A1 to A3

significantly. Only in case of A2, the optimization impaired
the effectiveness: the F1-scores of both Π2,2 = 〈A2, π

∗
2〉 and

Π2,3 = 〈A2, π
∗
3〉 are one point lower than for the baselines.

However, this is noise from the TreeTagger, which operates



Table 3: The average sentence response time t(Πi,j)
with standard deviation σi,j of each admissible
pipeline Πi,j = 〈Ai, πj〉 measured in milliseconds.

πj t(Π1,j) σ1,j t(Π2,j) σ2,j t(Π3,j) σ3,j

algorithm set A1 algorithm set A2 algorithm set A3

πa 3.23 0.07 51.05 0.40 168.40 0.57
πb 2.86 0.09 49.66 0.28 167.85 0.70
πc 2.54 0.08 15.54 0.23 45.16 0.53

π∗1 2.44 0.03 – – – –
π∗2 2.47 0.15 4.77 0.06 16.25 0.15
π∗3 2.62 0.05 4.95 0.09 10.19 0.05

on token-level. For such algorithms, filtering may influence
the feature values of tokens near sentence boundaries.

Efficiency Results Table 3 lists t(Πi,j) of each Πi,j . For
A1, our method led to a decrease from 3.23 ms to 2.44 ms.
This improvement seems small, but note that se1 and tk1

already need over 1 ms (cf. Table 1). In case of A2, the
response time was reduced to less than 1/10 of t(Π2,a) and
to less than 1/3 of t(Π2,c). For A3, the pipeline Π3,3 with
t(Π3,3) = 10.19 ms is over 4 times as fast as the most efficient
baseline Π3,c. Moreover, Π3,3 clearly outperforms Π3,2. This
offers evidence for the benefit of paradigm 4, while especially
the scheduling of A1 profits most from paradigm 1 and 2.
Accordingly, looking at the standard deviations, we see that
πb is significantly faster than πa only for A1.

Efficiency at Effectiveness Using the F1-score as effec-
tiveness E , we plotted F@E for the three algorithm sets and
the six schedules in Figure 3. The interpolated curves of
the schedules have the shape introduced in Section 1, and
we observe only a moderate slope for the optimized sched-
ules. Also, F@E cancelled out effects of high memory load
from applying complex algorithms, such as dp2, to many sen-
tences. For instance, this yielded F(Π3,a)/F(Π3,3) = 15.1
as opposed to t(Π3,a)/t(Π3,3) = 16.5.

Discussion The three algorithm sets mainly differ in the
uniformity of the algorithms’ response times (cf. Table 1),
which gives rise to the potential of lazy evaluation and op-
timized scheduling. In general, the room for improvement
depends on the density and distribution of task-relevant in-
formation in input texts. The more dense relevant informa-
tion occurs, the less improvement through filtering can be
expected, and, the more spread event-related information is
across the text, the larger the statement size w must be in
order to achieve high recall. Still, our method is generic in
that it allows to integrate arbitrary text analysis algorithms
and in that it can, in principle, be applied to any IE task.

4. CONCLUSION
Existing approaches to run-time efficiency in IE mostly

rely on the development of fast algorithms. In contrast, we
presented a method to increase the efficiency of IE pipelines.
Using a system-independent measure, we showed for a com-
plex IE task and three algorithm sets that a pipeline can
be significantly sped up without impairing its effectiveness.
The improvement is especially high if the response times of
the employed algorithms differ largely. Also, the impact de-
pends on the density and the distribution of task-relevant
information. These observations—along with the four op-
timization paradigms of our method—are a step towards a
theory of efficiency in IE, which we plan to extend and un-
derpin within forthcoming research.
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